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a b s t r a c t

A fast Gaussian expansion approach is used to investigate fundamental and second-

harmonic generation in practical Bessel beams of finite aperture. The analysis is based

on the integral solutions of the KZK equation under the quasilinear approximation. The

influence of the medium’s attenuation on the beam profile is considered. Analysis

results show that the absorption parameter has a significant effect on the far-field beam

profile of the second harmonic. Under certain circumstances, the second harmonic of a

practical Bessel beam still has the main properties of an ideal Bessel beam of infinite

aperture when it propagates within its depth of field.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the ‘‘diffraction-free’’ feature, Bessel beams and some of more general diffraction-free beams, such as X wave
beams, have long been widely investigated in the relevant specialties of physics, such as optics and acoustics [1–21]. In
theory, an ideal Bessel beam with infinite extent and energy can propagate to infinity without any spreading. However,
such an ideal Bessel beam is impossible to realize experimentally. In practice, the aperture of a physically realizable Bessel
beam is always finite. Even so, the beam has a very large depth of field in which the beam profile basically remains a Bessel
function distribution with little spreading. Recently, the nonlinear propagation of Bessel beams has attracted considerable
interest, due to its potential applications such as ultrasonic harmonic imaging and nonlinear optics [6,7,14–21]. In many
primary studies, the theoretical analysis is made under oversimplified assumptions. Obviously, it is difficult for these
assumptions to satisfy the physical reality that the aperture of the Bessel beam is finite and the absorption (and dispersion)
of media is usually non-negligible. As Arlt et al. noticed [7], if the reality is not taken into consideration, the theoretical
deduction will probably disagree with experiment, and might even lead to errors in stark contrast to experimental results.

In this paper, we investigate the fundamental and second-harmonic generation of the Bessel beam under practical
conditions; we consider the finiteness of the beam aperture and the absorption effect of media. Our analysis is based on the
integral solutions to the KZK parabolic nonlinear wave equation [22–24] under the quasilinear approximation. A Gaussian
expansion technique is applied to evaluate these integrals for the fundamental and second-harmonic fields [25–34]. The
numerical results show that for a practical finite aperture Bessel beam, as long as its aperture contains many lobes of
the Bessel function profile, the second-harmonic beam maintains the same main characteristics as are found in the infinite
aperture case. The absorption effect is also analyzed with regard to the radial pattern of the Bessel second-harmonic beam.
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2. Basic field integrals and Gaussian expansion

Here we provide only the linear and quasilinear solutions to the KZK nonlinear parabolic wave equation and their
alternative forms in dimensionless variables. The detailed derivations of these formulas can be found in some articles and
textbooks [22–34]. We assume that an axial-symmetric sound source, with an angular frequency o and a characteristic
radius a, oscillates harmonically in time, and the direction of the beam propagation is along the z-axis. In the quasilinear
approximation, the linearized solution to the equation for the fundamental pressure field is [22–34]

p1ðx;Z; tÞ ¼ Re½p0e�itq̄1ðx;ZÞ� (1a)

where
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2
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and the second-harmonic component is
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eā2Z0 x0

Z� Z0 exp i2
x2
þ x02

Z� Z0

 !
J0

4xx0

Z� Z0

� �
q̄2

1ðx
0;Z0Þdx0 dZ0 (2b)

Here x ¼ r=a and Z ¼ z=z0 are the radially and axially dimensionless coordinates, z0 ¼ ka2=2 is the Rayleigh distance, and
k ¼ o=c0 is the wavenumber. Correspondingly, the notations r and z denote the radial and axial coordinates. For a real
(finite size) transducer, a may be taken as its radius. The meaning of the other notations is the same as explained in most
Refs. [22–34], i.e., t ¼ oðt � z=c0Þ, p and p0 ¼ r0u0c0. Here p is the sound pressure, t the time, c0 the small signal sound
speed, and r0 the ambient density of the medium. Furthermore, u0 is the characteristic value of the normal velocity on the
source, b is the nonlinearity coefficient and ā ¼ z0a, with the absorption coefficient a at the angular frequency o (the
dispersion effect, if considered, may be introduced as the imaginary part of a) [22–24]. In the integral of the right-hand
side of Eq. (1b), q̄1ðx

0
Þ is the source function in the plane Z0 ¼ 0. On the basis of Eq. (2b), the second-harmonic generation in

the quasilinear approximation is interpreted as a sound field radiated by a volume distribution of virtual sources whose
strengths are proportional to q̄2

1ðx;ZÞ [24]. Eqs. (1b) and (2b) are the complex-valued pressure amplitudes in dimensionless
form. In these equations, the quantities ā1 and ā2 are the absorption coefficients by measuring the Rayleigh distance at the
frequencies o1 ¼ o and o2 ¼ 2o.

In the most general case, the integral solutions (1b) and (2b) must be numerically evaluated for the fundamental and
second-harmonic fields of an arbitrary distributed source. This numerical evaluation is relatively time-consuming,
especially for Eq. (2b), a three-dimensional and strongly oscillatory integral. Fortunately, the Gaussian expansion technique
[25–34] is particularly useful to simplify these integrals. In what follows, we briefly present an outline of this approach and
apply it to analysis of the fundamental and second-harmonic fields of the Bessel beams of finite aperture.

When an axial-symmetric source function is expanded into

q̄1ðxÞ ¼
XN
k¼1

Ak expð�Bkx
2
Þ (3)

the fundamental field of Eq. (1b) is reduced to calculation of simple Gaussian functions

q̄1ðx;ZÞ ¼
XN
k¼1

Ak

1þ iBkZ
exp �

Bkx
2

1þ iBkZ

 !
(4)

For a given source function, a set of Ak and Bk, the expansion and Gaussian coefficients, may be determined by computer
optimization or the other methods [25,29].

Correspondingly, the second-harmonic sound beam of Eq. (2b) is evaluated by [32–34]
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and

r1 ¼ ðBk þ BjÞ þ i2ZBkBj; r2 ¼ ðBk þ BjÞZ� i2; s1 ¼ 4BkBj; s2 ¼ �i2ðBk � BjÞ
2 (7)

It is found that once the set of expansion and Gaussian coefficients from Eq. (3) is obtained, the result from this procedure
with use of Eqs. (5)–(7) is considerably simpler to evaluate than the original field integral of Eq. (2b) for the second-
harmonic beam, requiring at most numerical integration of one dimension. Computation amount for the sound beam
distribution is then greatly reduced [32–34].

3. Bessel beams

A practical Bessel beam (transducer) with a finite extent may be approximately modeled by [8]

q̄1ðrÞ ¼
J0ða0rÞ; 0 � r � a

0; r4a

(
(8)

where a is the radius of the Bessel transducer, and the scaling parameter a0 is indeed the radial or transverse wavenumber
that determines the main lobe width of the Bessel beam. Express the source function (8) in dimensionless form as

q̄1ðxÞ ¼
J0ðaxÞ; 0 � x � 1

0; x41

(
(9)

Correspondingly, a ¼ a0a represents the dimensionless radial wavenumber and a=p is roughly the lobe number of a Bessel
beam within its aperture.

A key problem in the Gaussian expansion technique is how to expand Eq. (9) into a sum of Gaussian functions. This is
usually done by using the computer optimization approach [25]. To overcome the time-expenditure and stability problems
in this approach, a simple and analytical approach is preferred. To this end, we start directly from the result of Wen and
Breazeale [25] for the radiation field of a uniform piston transducer. Mathematically, their work is equivalent to that the
circ function of

circðxÞ ¼
1; 0 � xo1

0; x41

(
(10)

is decomposed into a series of Gaussian functions [25],

circðxÞ ¼
Xn

k¼1

ak expð�bkx2Þ (11)

Here we replace the original coefficients Ak and Bk with ak and bk. Two sets of the expansion coefficients of Eq. (11) are
presented: one, consisting of 10 pairs of a and b, is listed in Table 1 of [25], the other, consisting of 15 pairs, is listed in
Table 1 of [26]. The precision and the usefulness of these data have been fully demonstrated in many examples. From the
Bessel–Fourier transform of Eq. (11), an approximate Gaussian expansion of the Bessel function is [30]

J0ðxÞ ¼
Xn

k¼1

ak exp �
x2

4bk

 !
(12)

where the coefficients ak and bk are the same as those in Eq. (11). By the numerical result of (12), the 15-term Gaussian
expansion approximates J0ðxÞ very well in the interval of about 0–30. Therefore, the finite aperture Bessel source function
(9) is represented by

q̄1ðxÞ ¼ J0ðaxÞ � circðxÞ

¼
XN
k¼1

Ake�Bkx
2

(13)

In Eq. (13), the new coefficients Ak and Bk are the combination of the known coefficients ak and bk:

Ak ¼ aiaj; Bk ¼ bi þ a2=4bj, (14)

where the subscripts i and j range from 1 to n and k ¼ jþ nði� 1Þ. The whole Gaussian sum with N ( ¼ n2) terms
approximately covers the source function of a truncated Bessel beam.

For a practical Bessel beam of finite aperture, there are three characteristic parameters governing the behaviors of the
beam propagation. The first two parameters are the aperture radius a (or dimensionless ka) of the beam and the radial
wavenumber a0, or dimensionless a. The third is the depth of field (or the so-called maximum diffraction-free distance)

Zmax ¼ 2=a (15)
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which is derived by Durnin et al. [1] in the frame of geometric optics. Within this depth, the finite aperture Bessel beam
remains the main feature in the case of infinite aperture and exhibits very little diffraction. Outside this range, the beam
exhibits considerable diffraction. This argument is true only for the case that the beam has many lobes of the Bessel
function on the aperture [1,2,11]. For a few lobes, the Bessel beam, even within its depth of field, loses the ‘‘diffraction-free’’
feature of an ideal Bessel beam and exhibits noticeable diffraction (beam spreading and amplitude drop-off) [8]. In an
extreme case ða � 2:405Þ where the aperture of a ‘‘Bessel’’ transducer includes only one main lobe, the Bessel function
characteristic of the beam profile is fully lost. In this case, the field pattern is nearly similar to that radiated from a simply
sported or clamped piston. This paper does not consider these extremes.

Fig. 1 shows the field distribution of a 10-lobe Bessel beam at the fundamental frequency. As expected, this finite
aperture Bessel beam has still the main features of the infinite Bessel beam. The radial beam profile is basically that of
the Bessel function distribution. In most of the region from the aperture to the critical distance given by Eq. (15), the main
lobe width of the beam remains nearly unchanged with the increase of propagation distance. Beyond this range, diffractive
spreading becomes considerable.
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Fig. 1. The fundamental field distributions of a 10-lobe Bessel beam (a ¼ 30.63 and Zmax ¼ 0:0653), computed by use of the Gaussian expansion. (a)

Comparison of approximate source function (Z ¼ 0) of Eq. (13) and the Bessel function of Eq. (9); (b)–(d) are at the axial distance Z=Zmax ¼ 0:2; 0:5 0:8

(within the maximum diffraction-free distance). And (e) is the normalized pressure amplitude on the acoustic axis. To ensure the accuracy of the Gaussian

expansion, the results from numerical integration of Eq. (1b) are also graphed here, in fair agreement with these from the Gaussian expansion. In all the

calculations, the coefficients in Table 1 of [26] are used.
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In the above analysis, we have not considered the influence of absorption by media. In fact, it is obvious that, in the
paraxial approximation, the absorption of media only affects the field distribution on the acoustic axis, but does not change
the radial beam distribution. (The axial-field is decayed at the exponential term.) In the next section, we will see that, for
the second-harmonic generation, the absorption of media will produce effects on the radial distribution of the beam [20].
This relates to the integrand in Eq. (2b).

Before further analysis, let us recall the main features of the second-harmonic component of the ideal infinite-aperture

Bessel beam [14–21]. In lossless media, the radial beam profile of the second harmonic is approximated by J2
0ðaxÞ in the

near field region of about 0 � a2Z=2op=2, and by J0ð2axÞ in the entire far-field region beyond a2Z=2 � 2p. In the transition

region of p=2 � a2Z=2 � 2p, the radial behaviors of the second harmonic deviate slightly from J2
0ðaxÞ and J0ð2axÞ, and the

mainlobe width of the beam gradually decreases from approximately 1=
ffiffiffi
2
p

times to one-half times that of the
fundamental, as the propagation distance increases. Intuitively, the second harmonic of a practical Bessel beam should also
have the properties for the ideal Bessel beam when it propagates within its depth of field. This point of view may be
demonstrated by the following numerical calculation.

Fig. 2 shows the second-harmonic field distribution of a 10-lobe Bessel beam in lossless media. The figure indicates that
this Bessel beam possesses the same properties as in the ideal case of infinite aperture. In the region around
0.0
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Fig. 2. The second-harmonic field distributions of a 10-lobe Bessel beam, computed by use of the Gaussian expansion. (a)–(e) correspond to the different

axial distance Z=Zmax ¼ 0.02, 0.1, 0.2, 0.5, and 0.8. Correspondingly, 1
2a

2Z ¼ 0:612 (op=2), 3.06, (o2p), 6.12 (� 2p), 15.3, 24.5 (42p). (f) On the acoustic

axis (x ¼ 0). The results here and those in the next Fig. 3 are calculated from the Gaussian expansion method of Eqs. (5)–(7).
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2p � a2Z=2oa2Zmax=2 ¼ a, the main lobe and the first several sidelobes (profile and beamwidth) in the second-harmonic
field are almost independent of the distance of propagation. Their profile is still approximated by the Bessel function

J0ð2axÞ and the width of mainlobe is exactly equal to one-half that at the fundamental frequency, as shown in Figs. 2(c)–(e),
and 3(a). In other regions, the beam profile of the second harmonic is basically predicted by the theory from the
assumption of infinite aperture.

We now show the influence of absorption on the beam profile of the second harmonic. It is convenient to follow
Cunningham and Hamilton [20] and introduce the absorption parameter

ā ¼ ā2 � 2ā1 (16)

and the absorption length ‘a ¼ 1=ā. We restrict our attention to the case of ā40, which corresponds to a fluid for which the

absorption coefficient increases to frequency raised to a power greater than unity (ao / om, m41). This criterion includes,
for example, thermo-viscous fluids (m ¼ 2) and soft tissues ðm � 1Þ [20]. Here a slight different quantity āZmax ¼

ða2 � 2a1Þzmax is used to evaluate how the attenuation of sound affects the radial profile of the second harmonic. The value
of this parameter indicates the relative relation between the absorption length and the maximum diffraction-free length.
The value of āZmax � 1, for example, means that the absorption length is of the same order as the maximum diffraction-

free distance. Additionally, the two extremes should be noticed. One is a1 ¼ a2 ¼ 0 (or ā1 ¼ ā2 ¼ 0) which gives āZmax ¼ 0

naturally. This represents no absorption of media, i.e., an ideal situation. The other is that the absorption coefficients a1a0
and a2a0, i.e., the media are absorptive. If these two absorption coefficients are linearly dependent on the frequency of
sound (ao / o, then a2 ¼ 2a1, this corresponds to an ‘‘ideal’’ tissue), then āZmax ¼ 0 also. This fact implies that the

absorption parameter āZmax alone is not sufficient to characterize the propagation behavior of the second harmonic in

lossy media and at least one addition parameter is needed.
Fig. 3 is the far-field beam profiles of the second harmonic with a variation of āZmax. It is seen that when the value of

āZmax is relatively small (such as āZmax ¼ 5, āZmax ¼ 1, or smaller), i.e. when the absorption length ‘a has the same order

of magnitude as the maximum diffraction-free length Zmax, the absorption has no obvious effect on the radial distribution

of the second-harmonic beam. The beam profile is still close to an approximate distribution of J0ð2axÞ. For intermediate
values of āZmax (such as āZmax ¼ 20 and āZmax ¼ 40), i.e., the absorption length is roughly located in the transition range,

the radial beam distribution of the second harmonic derivates from the distribution J0ð2axÞ and approaches the transition-
range beam profile in the lossless case. For a large value of āZmax, for example āZmax ¼ 100, the absorption length becomes

very small so that the far-field beam profile approximates the distribution J2
0ðaxÞ as it is at the near diffraction-free range.
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The condition for a relatively small value of the absorption parameter āZmax means only ā2 � 2ā1, but not both ā1 and
ā2 are small. When ā1 or ā2 is large but āZmax is small, the radial shape in the far diffraction-free range is still similar to the
distribution of J0ð2axÞ, not affected by absorption. However, the second-harmonic amplitude is much lower in this
range than in the other ranges. In other words, in this case the effective depth of field is much shorter than the
depth of field [defined by (15)] in the lossless case. To completely characterize the second-harmonic generation in a
practical Bessel beam in lossy media, three parameters are required: maximum diffraction-free distance Zmax, absorption
parameter ā, and absorption coefficient absorption ā1 at the fundamental frequency (or ā2 at the second-harmonic
frequency). The reciprocal of ā1, ‘a1 ¼ 1=ā1, represents the dimensionless absorption distance (length) of the fundamental
sound (plane) field.

4. Concluding remarks

We conclude this paper by indicating the effective depth of the second-harmonic field of the Bessel beam in lossy media.

For a very large absorption parameter ā1 (it means that a small absorption length ‘a1 � ‘1 or even smaller, here ‘1 � p=a2),
the field depth of the second harmonic is determined by the absorption length ‘a1. In this field depth, the radial beam of

J2
0ðaxÞ is predominant. When the value of the absorption parameter ā1 is intermediate, i.e., when the absorption length is

approximately located in the transition range (‘1o‘a1o‘2 and ‘2 � 4p=a2), the absorption length la1 may be viewed as the

field depth. The radial profile still has the J2
0ðaxÞ distribution except for small ā values (correspondingly ‘ab‘2). When both

ā1 and ā are small [notice from definition (16) that a small value of ā1 leads to a small ā], i.e., the corresponding lengths ‘a1

and ‘a are both the same order of magnitude as Zmax, or are large compared to Zmax, the second-harmonic field depth is

simply the maximum diffraction-free distance Zmax as defined in lossless case. Furthermore, it is noted that the range from

the sound source Z ¼ 0 to the transition distance ‘2 � 4p=a2 is just a small portion of the entire depth of field. For a 10-lobe

Bessel beam with a � 30, for instance, ‘2=Zmax � 2p=a � 1
5 is about one-fifth of the entire depth of field. Therefore, it may

be reasonable to think that the radial beam shape of the second-harmonic is naturally characterized by the approximate

expression J0ð2axÞ in the entire depth of field. In this sense, we say that the second harmonic of a practical Bessel beam is
nearly radially diffraction-free, like its fundamental component. The beam width is exactly equal to one-half that at the
fundamental frequency [14–21].
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